Olimpiada Peruana de Informatica 2026 Fase 1A - Solucionario

Victor Racs6 Galvan Oyola
Rosangel Alexandra Bullon Linares

19 de noviembre de 2025

Olimpiada Peruana de Informética 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Tutorial del problema: “Adjacent Sort?”

Autor(es): Racs6 Galvan
Desarrollador(es): Racs6 Galvan

Grupo 1 (Complejidad Esperada: O(kn))

Para resolver este grupo basta con realizar la simulacién de las k iteraciones del algoritmo, lo cual tomaria
O(kn) de complejidad.

Grupo 2 (Complejidad Esperada: O(nlogn))
Para resolver este grupo debemos realizar algunas observaciones; la primera de todas es la siguiente:

Observacion 1.1. En la i-ésima iteracion de una ejecucion de adjacent_sort, se cumplird que
max{a;} = a;_1.

0§j<i{ it

Esto quiere decir que en cada iteracién haremos swap entre el méximo de los elementos a la izquierda y
la posicién i. Esta observacion nos lleva a la siguiente como consecuencia:

Observacién 1.2. Dada una posicion © con evactamente k posiciones j < i tales que aj > a;; luego de
una iteracion de adjacent_sort habrdn exactamente max{k — 1,0} posiciones j < i tales que a; > a;

Lo anterior quiere decir que la cantidad de elementos a la izquierda estrictamente mayores que a; termi-
nard reduciéndose en 1 luego de la iteracion; ademds, la nueva posicién de a; serd ¢ — 1 debido al swap
correspondiente.

Podemos usar esto para asociar a cada valor a; con la cantidad de inversiones inv,, que tiene; es decir, la
cantidad de elementos a su izquierda que sean estrictamente mayores. Podemos calcular dicha cantidad
iterando de izquierda a derecha y usando un Fenwick tree para contar cudntos elementos son mayores que
a;. A esta cantidad le restaremos k (méxima cantidad de veces que dicha cantidad se reduce en 1) y si se
vuelve negativa la dejaremos en 0.

Luego de haber asignado las inversiones por valor, iteraremos desde el 1 hasta el n y colocaremos el i-ésimo
valor en la (inv; + 1)-ésima posicién libre, la cual también se puede obtener usando Fenwick tree.

Ya que todas las operaciones pueden ser realizadas en tiempo logaritmico, la complejidad se vuelve
O(nlogn).

Tutorial del problema: “Emparejamiento cercano”

Autor(es): Racsé Galvan
Desarrollador(es): Racsé Galvan

Grupo 1 (Complejidad Esperada: O(n?))

Para resolver este grupo podemos mantener los valores que todavia no han sido elegidos en alguna pareja
y realizar las n iteraciones.

En cada iteracion, verificaremos todas las parejas y obtendremos la mas adecuada en O(n?).

Finalmente, la complejidad serd de O(n?).

Grupo 2 (Complejidad Esperada: O(n?))

Para resolver este grupo debemos notar que cualquier par elegido consistird de dos elementos que sean
consecutivos en la secuencia ordenada de valores, asi que podemos ordenar @ una unica vez y luego
comparar solo los pares de posiciones consecutivas para elegir el par més adecuado en cada iteracién. Esto
nos reduce un factor de n, asi que la complejidad terminarfa siendo O(n?).

Page 1 of 7

Olimpiada Peruana de Informética 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Grupo 3 (Complejidad Esperada: O(nlogn))
Para resolver este grupo debemos usar la observacién del grupo 2 e intentar mantener las diferencias de
posiciones consecutivas de manera eficiente.

Para ello usaremos un std: :set S que contenga las tuplas (—diferencia, suma,i,j) que representen al
negativo de la diferencia, la suma y las dos posiciones (i < j) del arreglo ordenado para poder realizar
insercién, eliminacién y consulta del méximo en tiempo O(logn) o inferior. Para poder eliminar una
posicién ¢ tendremos que eliminar de S la tupla correspondiente a ¢ con su predecesor en los valores
ordenados restantes (sea L;) y también la tupla correspondiente a i con su sucesor (sea R;) y agregar la
tupla entre L; y R; en caso ambos sean posiciones vélidas; por iltimo se deben redirigir los L y R de R;
y L;, respectivamente. Obviamente aplicaremos este procedimiento tanto a ¢ como a j.

La complejidad final serd de O(nlogn).

Tutorial del problema: “Carrera arreglada”

Autor(es): Racsé Galvan
Desarrollador(es): Racsé Galvan

Grupo 1 (Complejidad Esperada: O(n!n))

Para resolver este grupo podemos probar con todas las permutaciones p posibles de las intersecciones para
fijar el ciclo que seguiremos. Una vez fijada la permutacién, podemos iterar sobre todas las longitudes
validas que puedan llegar al mismo nodo py.

Ya que tendremos un trabajo de O(n) por cada permutacién, la complejidad serd de O(n!n).

Grupo 2 (Complejidad Esperada: O(n?))

Para resolver este grupo podemos hacer la observacién de que cualquier ciclo valido tendra una longitud
que no exceda a n. Por otro lado, consideraremos el siguiente grafo:

V=A{12,...,n}
U)(UZ',V;) :Bi—AZ‘VZ‘: 1,...,m
Notemos que si fijamos una longitud L, vamos a querer calcular algin ciclo de longitud L con suma de

pesos positiva, para lo cual nos basta calcular la médxima suma de pesos — Si esta es positiva, entonces si
existe alguna respuesta; en caso contrario, ningun ciclo de longitud L tiene suma de pesos vélida.

Para poder calcular los ciclos y caminos de longitud L usaremos la matriz de adyacencia M del grafo,
donde

0 i=7
M;; = —oo No existe la arista (i, j)
w(i,j) Existe la arista (4, 7)

Si operamos bajo la funcién (méx, +) para el producto de las matrices (notemos que el producto tipico
es (+, x)), podremos calcular el méximo camino de longitud L del nodo i al nodo j en la matriz M*.

Page 2 of 7

[< NS, B VU R R

AR W N =

o N O o

©

10
11

12
13

14

Olimpiada Peruana de Informética 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Algoritmo 1: PRODUCTO-MATRICES(n, A, B)

Sea C' una nueva matriz de dimension n ;
para i < 1 a n hacer
para j < 1 a n hacer
Cli[j] = o0 ;
para k < 1 a n hacer
| Clilly] + max{C][j], Ali][K] + BIK][j]}

devolver C.

Si probamos todas las posibles longitudes, tendremos una complejidad de O(n) productos de matriz, lo
cual termina con O(n*) de complejidad.

Grupo 3 (Complejidad Esperada: O(n3logn))

Para resolver este grupo aplicaremos la misma idea que el grupo 2, pero usaremos binary lifting para
encontrar la primera longitud L tal que el méximo de los ciclos de M’ es positivo. Para esto, calcularemos
todas las matrices M2" para todo k =0, ..., |logyn].

Luego, mantendremos una matriz X de referencia (inicializada en como la matriz M pero considerando
un grafo con n nodos sin aristas, denotaremos esta matriz por I,,) y tomaremos una decisién dependiendo
k
del producto de X x M?":
» Si X x M?" tiene un ciclo de peso positivo, entonces no hacemos nada.
= Si X x M?" no tiene un ciclo de peso positivo, asignamos X + X x M?%".

Luego de obtener el X final, este reflejard la longitud méxima tal que no hay un ciclo positivo todavia,
asi que si calculamos X x M obtendremos la menor longitud con un ciclo positivo.

Algoritmo 2: SOLUCION(n, M)

Sea P[|logy n| + 1] un arreglo de matrices ;
P[0] < M ;
para k < 1 a |log, n| hacer

| Pli] + P[i—1] x Pli — 1] ;
X I
L+ 0;
para k < |logyn] a 0 hacer

X'« X x P[k] ;

n
si mélx{Xz{i} < 0 entonces
1= ’

X« X',
L+« L+2%;

L+~ L+1;
X+ XxM:;

n
devolver {L, méuIX{Xi,i}}
o

Ya que k tiene una cantidad O(logn) de valores diferentes, la complejidad termina siendo O(n?logn).

Tutorial del problema: “Un problema de Sumatorias”

Autor(es): Rosangel Bullon
Desarrollador(es): Rosangel Bullon

Page 3 of 7

© W N O A W =

=
o

[y
juy

12
13
14

Olimpiada Peruana de Informética 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Nota: Asumir que las operaciones en los pseudocddigos mostrados en esta seccién son todas modulares
con el médulo del problema.

Grupo 1 (Complejidad Esperada: O(M~vM +T))

Para resolver este problema plantearemos un preprocesamiento tomando como referencia el méximo valor
de N, el cual denotaremos por M. Como este valor es a lo més 10* podemos hacer esto con fuerza bruta
para saber los valores f(NN) y guardarlos en un arreglo para al final de saber todos los valores, guardar la
sumatoraria de dichos valores en otro arreglo y asi se puedan responder las consultas en O(1).

Denotaremos g(n) = n? + 2026n — 2026, entonces el enunciado sefiala que:

g(n) =>_ f(d)

dn

Asi que podemos deducir el valor correcto de f de la siguiente manera:

g(n) =Y f(d)+ f(n) = f(n) = g(n) = Y _ f(d)
din dln
d<n d<n

Asi que solo nos basta iterar sobre n de manera creciente y calcular f(n) en funcién de sus divisores
estrictamente menores.

Este procedimiento se veria de esta forma:

Algoritmo 3: PREPROCESAMIENTO(M)

Sea f un arreglo de enteros de tamano M + 1 ;
S <1
para i < 2 a M hacer
f[i] + n? + 20260 — 2026 ;
Flil = Sl = 1 5
para j < 2 a Vi hacer
// Solo necesitamos verificar hasta la v/M para hallar los divisores ;
si j es divisor de i entonces
fli) = flil = fld] 5

si j * j # i entonces

R IEAHE

Sea res un arreglo de enteros de tamano M + 1 inicializado en 0 ;
parai < 1 a M hacer

L resli] < res[i — 1] + f[i] ;

La complejidad serd de O(M v M + T') porque las consultas se responden usando el arreglo res.

Grupo 2 (Complejidad Esperada: O(M log M + T))

Para este grupo el valor maximo de N puede ser tan grande como 108, por lo que el enfoque del Grupo 1,
que realizaba una biisqueda de divisores para cada nimero, resulta demasiado lento. Por ello utilizaremos
una técnica de preprocesamiento basada en recorrer miltiplos, lo cual es mucho mads eficiente.

La idea general es la siguiente:

» Mantendremos un arreglo g donde g[n] almacena temporalmente la suma 3., f(d), de la cual
iremos quitando los valores f(d), donde d es un divisor de n con d < n.

Page 4 of 7

[BNV R SR

© o N o

10
11
12

13
14

Olimpiada Peruana de Informética 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Entonces:
g[n] = n% + 2026n — 2026.

» Cuando procesemos un nimero n, ya tendremos en g[n| el valor de f(n). Al tener el valor de f(n)

lo que haremos después sera visitar todos los miltiplos de n que son mayores que €l para propagar
la resta de los f(d).

Entonces:
Slk] —= f(n) para k = 2n,3n,4n, ...

A continuacién mostramos el procedimiento en forma de algoritmo.

Algoritmo 4: PREPROCESAMIENTO(M)

Sea g un arreglo de enteros de tamano M + 1 inicializado en 0 ;
Sea res un arreglo de enteros de tamano M + 1 inicializado en 0 ;
// Aqui inicializamos g[n] = 3", f(d) ;
paran < 1 a M hacer

L gn] < n? + 2026n — 2026;

// Aqui quitaremos el valor f(d) en S[n| para todo n que es muiiltiplo de d. ;
para i < 1 a M hacer
//Para este punto g[i] serd el valor de f(7). ;
J <+ 21
mientras j < M hacer
L gli] < glil — glil 5
Je=Jgtis

para i < 1 a M hacer
L resli] < resli — 1] + f[i] ;

La complejidad final es:
O(MlogM +T),

ya que las consultas se resuelven en O(1) utilizando el arreglo de prefijos res.

Grupo 3 (Complejidad Esperada: O(n%) por caso)

Para resolver este grupo debemos plantear el uso de la Convolucién de Dirichlet (%), la cual estd definida
ast:

Definicién 4.1 (Convolucién de Dirichlet). La convolucion de dirichlet de dos funciones aritméticas f y
g estd denotada por f *x g y tiene la siguiente definicion:

(fg)(m) =3 f(d) x g (%)
din
En este caso, tenemos que:

o) =S f(d) = f 1

dln

n
Donde 1 es la funcién constante h(n) = 1, y deseamos calcular > f(7).
i=1

En un caso general, para dos funciones f y g, podemos plantear que:

Page 5 of 7

N =

PN

© o N o w;

10
11
12

13
14

Olimpiada Peruana de Informética 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

(f=g)(n §jf

Si denotamos por F(n) = > f(i), tendremos:
i=1

n

> (fxg)(i) =

i=1
Si aislamos 7 = 1 en el lado derecho:

n

> (Fx9)) = g(1)

i=1

F(n)="=

()= S5 (3)

n

3o ()

i=1

n

X F(n)—l—Zg(z) xF(L?J)

=2

i(f*gm éguw(w

Reemplazando los datos del problema; es decir,

n

g(1)
fxg=gn), f=fyg=1

F(n) = (i + 2026i — 2026) — Zn: F (EJ)
=2

i=1

F(n) = n(n+1)(2n+1)

Notemos que hay O(y/n) valores diferentes de
si almacenamos las respuestas parciales en un s

3. . .
O(n4); sin embargo, esto no es suficientemente

+1013n(n + 1) — 20261 — zn: 7(|%])

1=2

|2]| (para el cual se tiene un algoritmo cldsico), asi que

td: :unordered_map podremos tener una complejidad de
rdpido. Es posible mejorar la complejidad preprocesando

la respuesta de todos los F'(i) con i < K, donde la eleccién de K definird la complejidad final. Para este

caso, tomar K ~ n5 nos genera una complejidad de O(nd) por caso.

Algoritmo 5: F(n)

si n < 10% entonces
L devolver res[n] ;

si memo contiene a n como llave entonces
L devolver memoln] ;

res « "OEDEMED 10135 (n 4 1) — 2026n ;
[+ 2,
mientras [< n hacer
v 7]
re 3]s
// Todos los valores i € [, r] aportan con el
res < res— (r—1+1) x F(z) ;
l—r+1;

memo|n| < res ;
devolver memol[n] ;

mismo F(z) ;

Page 6 of 7

Olimpiada Peruana de Informética 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Donde memo es un std: :unordered_map global que almacena las respuestas y se asume que se ha ejecu-
tado PREPROCESAMIENTO(10%) antes de responder a las consultas.

Page 7 of 7

	Problem 1: Adjacent Sort?
	Problem 2: Emparejamiento cercano
	Problem 3: Carrera arreglada
	Problem 4: Un problema de Sumatorias

