
Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario

Vı́ctor Racsó Galván Oyola
Rosangel Alexandra Bullon Linares

19 de noviembre de 2025



Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Tutorial del problema: “Adjacent Sort?”
Autor(es): Racsó Galván
Desarrollador(es): Racsó Galván

Grupo 1 (Complejidad Esperada: O(kn))
Para resolver este grupo basta con realizar la simulación de las k iteraciones del algoritmo, lo cual tomaŕıa
O(kn) de complejidad.

Grupo 2 (Complejidad Esperada: O(n log n))
Para resolver este grupo debemos realizar algunas observaciones; la primera de todas es la siguiente:

Observación 1.1. En la i-ésima iteración de una ejecución de adjacent_sort, se cumplirá que
máx
0≤j<i

{aj} = ai−1.

Esto quiere decir que en cada iteración haremos swap entre el máximo de los elementos a la izquierda y
la posición i. Esta observación nos lleva a la siguiente como consecuencia:

Observación 1.2. Dada una posición i con exactamente k posiciones j < i tales que aj > ai; luego de
una iteración de adjacent_sort habrán exactamente máx{k − 1, 0} posiciones j < i tales que aj > ai

Lo anterior quiere decir que la cantidad de elementos a la izquierda estrictamente mayores que ai termi-
nará reduciéndose en 1 luego de la iteración; además, la nueva posición de ai será i − 1 debido al swap
correspondiente.

Podemos usar esto para asociar a cada valor ai con la cantidad de inversiones invai que tiene; es decir, la
cantidad de elementos a su izquierda que sean estrictamente mayores. Podemos calcular dicha cantidad
iterando de izquierda a derecha y usando un Fenwick tree para contar cuántos elementos son mayores que
ai. A esta cantidad le restaremos k (máxima cantidad de veces que dicha cantidad se reduce en 1) y si se
vuelve negativa la dejaremos en 0.

Luego de haber asignado las inversiones por valor, iteraremos desde el 1 hasta el n y colocaremos el i-ésimo
valor en la (invi + 1)-ésima posición libre, la cual también se puede obtener usando Fenwick tree.

Ya que todas las operaciones pueden ser realizadas en tiempo logaŕıtmico, la complejidad se vuelve
O(n log n).

Tutorial del problema: “Emparejamiento cercano”
Autor(es): Racsó Galván
Desarrollador(es): Racsó Galván

Grupo 1 (Complejidad Esperada: O(n3))
Para resolver este grupo podemos mantener los valores que todav́ıa no han sido elegidos en alguna pareja
y realizar las n iteraciones.

En cada iteración, verificaremos todas las parejas y obtendremos la más adecuada en O(n2).

Finalmente, la complejidad será de O(n3).

Grupo 2 (Complejidad Esperada: O(n2))
Para resolver este grupo debemos notar que cualquier par elegido consistirá de dos elementos que sean
consecutivos en la secuencia ordenada de valores, aśı que podemos ordenar a una única vez y luego
comparar solo los pares de posiciones consecutivas para elegir el par más adecuado en cada iteración. Esto
nos reduce un factor de n, aśı que la complejidad terminaŕıa siendo O(n2).

Page 1 of 7



Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Grupo 3 (Complejidad Esperada: O(n log n))
Para resolver este grupo debemos usar la observación del grupo 2 e intentar mantener las diferencias de
posiciones consecutivas de manera eficiente.

Para ello usaremos un std::set S que contenga las tuplas (−diferencia, suma, i, j) que representen al
negativo de la diferencia, la suma y las dos posiciones (i < j) del arreglo ordenado para poder realizar
inserción, eliminación y consulta del máximo en tiempo O(log n) o inferior. Para poder eliminar una
posición i tendremos que eliminar de S la tupla correspondiente a i con su predecesor en los valores
ordenados restantes (sea Li) y también la tupla correspondiente a i con su sucesor (sea Ri) y agregar la
tupla entre Li y Ri en caso ambos sean posiciones válidas; por último se deben redirigir los L y R de Ri

y Li, respectivamente. Obviamente aplicaremos este procedimiento tanto a i como a j.

La complejidad final será de O(n log n).

Tutorial del problema: “Carrera arreglada”
Autor(es): Racsó Galván
Desarrollador(es): Racsó Galván

Grupo 1 (Complejidad Esperada: O(n!n))
Para resolver este grupo podemos probar con todas las permutaciones p posibles de las intersecciones para
fijar el ciclo que seguiremos. Una vez fijada la permutación, podemos iterar sobre todas las longitudes
válidas que puedan llegar al mismo nodo p0.

Ya que tendremos un trabajo de O(n) por cada permutación, la complejidad será de O(n!n).

Grupo 2 (Complejidad Esperada: O(n4))
Para resolver este grupo podemos hacer la observación de que cualquier ciclo válido tendrá una longitud
que no exceda a n. Por otro lado, consideraremos el siguiente grafo:

V = {1, 2, . . . , n}

E = {(Ui, Vi)|∀ i = 1, . . . ,m}

w(Ui, Vi) = Bi −Ai ∀ i = 1, . . . ,m

Notemos que si fijamos una longitud L, vamos a querer calcular algún ciclo de longitud L con suma de
pesos positiva, para lo cual nos basta calcular la máxima suma de pesos — Si esta es positiva, entonces śı
existe alguna respuesta; en caso contrario, ningun ćıclo de longitud L tiene suma de pesos válida.

Para poder calcular los ciclos y caminos de longitud L usaremos la matriz de adyacencia M del grafo,
donde

Mi,j =


0 i = j
−∞ No existe la arista (i, j)

w(i, j) Existe la arista (i, j)

Si operamos bajo la función (máx,+) para el producto de las matrices (notemos que el producto t́ıpico
es (+,×)), podremos calcular el máximo camino de longitud L del nodo i al nodo j en la matriz ML.

Page 2 of 7



Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Algoritmo 1: Producto-Matrices(n,A,B)

1 Sea C una nueva matriz de dimensión n ;
2 para i← 1 a n hacer
3 para j ← 1 a n hacer
4 C[i][j]←∞ ;
5 para k ← 1 a n hacer
6 C[i][j]← máx{C[i][j], A[i][k] +B[k][j]}

7 devolver C.

Si probamos todas las posibles longitudes, tendremos una complejidad de O(n) productos de matriz, lo
cual termina con O(n4) de complejidad.

Grupo 3 (Complejidad Esperada: O(n3 log n))
Para resolver este grupo aplicaremos la misma idea que el grupo 2, pero usaremos binary lifting para
encontrar la primera longitud L tal que el máximo de los ciclos de ML es positivo. Para esto, calcularemos
todas las matrices M2k para todo k = 0, . . . , ⌊log2 n⌋.
Luego, mantendremos una matriz X de referencia (inicializada en como la matriz M pero considerando
un grafo con n nodos sin aristas, denotaremos esta matriz por In) y tomaremos una decisión dependiendo
del producto de X ×M2k :

Si X ×M2k tiene un ciclo de peso positivo, entonces no hacemos nada.

Si X ×M2k no tiene un ciclo de peso positivo, asignamos X ← X ×M2k .

Luego de obtener el X final, este reflejará la longitud máxima tal que no hay un ciclo positivo todav́ıa,
aśı que si calculamos X ×M obtendremos la menor longitud con un ciclo positivo.

Algoritmo 2: Solucion(n,M)

1 Sea P [⌊log2 n⌋+ 1] un arreglo de matrices ;
2 P [0]←M ;
3 para k ← 1 a ⌊log2 n⌋ hacer
4 P [i]← P [i− 1]× P [i− 1] ;

5 X ← In ;
6 L← 0 ;
7 para k ← ⌊log2 n⌋ a 0 hacer
8 X ′ ← X × P [k] ;

9 si
n

máx
i=1
{X ′

i,i} ≤ 0 entonces

10 X ← X ′ ;
11 L← L+ 2k ;

12 L← L+ 1 ;
13 X ← X ×M ;

14 devolver {L,
n

máx
i=1
{Xi,i}}

Ya que k tiene una cantidad O(log n) de valores diferentes, la complejidad termina siendo O(n3 log n).

Tutorial del problema: “Un problema de Sumatorias”
Autor(es): Rosangel Bullon
Desarrollador(es): Rosangel Bullon

Page 3 of 7



Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Nota: Asumir que las operaciones en los pseudocódigos mostrados en esta sección son todas modulares
con el módulo del problema.

Grupo 1 (Complejidad Esperada: O(M
√
M + T ))

Para resolver este problema plantearemos un preprocesamiento tomando como referencia el máximo valor
de N , el cual denotaremos por M . Como este valor es a lo más 104 podemos hacer esto con fuerza bruta
para saber los valores f(N) y guardarlos en un arreglo para al final de saber todos los valores, guardar la
sumatoraria de dichos valores en otro arreglo y aśı se puedan responder las consultas en O(1).

Denotaremos g(n) = n2 + 2026n− 2026, entonces el enunciado señala que:

g(n) =
∑
d|n

f(d)

Aśı que podemos deducir el valor correcto de f de la siguiente manera:

g(n) =
∑
d|n
d<n

f(d) + f(n)→ f(n) = g(n)−
∑
d|n
d<n

f(d)

Aśı que solo nos basta iterar sobre n de manera creciente y calcular f(n) en función de sus divisores
estrictamente menores.

Este procedimiento se veŕıa de esta forma:

Algoritmo 3: Preprocesamiento(M)

1 Sea f un arreglo de enteros de tamaño M + 1 ;
2 f [1]← 1 ;
3 para i← 2 a M hacer
4 f [i]← n2 + 2026n− 2026 ;
5 f [i]← f [i]− f [1] ;
6 para j ← 2 a

√
i hacer

7 // Solo necesitamos verificar hasta la
√
M para hallar los divisores ;

8 si j es divisor de i entonces
9 f [i]← f [i]− f [j] ;

10 si j ∗ j ̸= i entonces
11 f [i]← f [i]− f

[
i
j

]
;

12 Sea res un arreglo de enteros de tamaño M + 1 inicializado en 0 ;
13 para i← 1 a M hacer
14 res[i]← res[i− 1] + f [i] ;

La complejidad será de O(M
√
M + T ) porque las consultas se responden usando el arreglo res.

Grupo 2 (Complejidad Esperada: O(M logM + T ))
Para este grupo el valor máximo de N puede ser tan grande como 106, por lo que el enfoque del Grupo 1,
que realizaba una búsqueda de divisores para cada número, resulta demasiado lento. Por ello utilizaremos
una técnica de preprocesamiento basada en recorrer múltiplos, lo cual es mucho más eficiente.

La idea general es la siguiente:

Mantendremos un arreglo g donde g[n] almacena temporalmente la suma
∑

d|n f(d), de la cual
iremos quitando los valores f(d), donde d es un divisor de n con d < n.

Page 4 of 7



Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Entonces:
g[n] = n2 + 2026n− 2026.

Cuando procesemos un número n, ya tendremos en g[n] el valor de f(n). Al tener el valor de f(n)
lo que haremos después sera visitar todos los múltiplos de n que son mayores que él para propagar
la resta de los f(d).

Entonces:
S[k] −= f(n) para k = 2n, 3n, 4n, . . .

A continuación mostramos el procedimiento en forma de algoritmo.

Algoritmo 4: Preprocesamiento(M)

1 Sea g un arreglo de enteros de tamaño M + 1 inicializado en 0 ;
2 Sea res un arreglo de enteros de tamaño M + 1 inicializado en 0 ;
3 // Aqúı inicializamos g[n] =

∑
d|n f(d) ;

4 para n← 1 a M hacer
5 g[n]← n2 + 2026n− 2026;

6 // Aqúı quitaremos el valor f(d) en S[n] para todo n que es múltiplo de d. ;
7 para i← 1 a M hacer
8 //Para este punto g[i] será el valor de f(i). ;
9 j ← 2i ;

10 mientras j ≤M hacer
11 g[j]← g[j]− g[i] ;
12 j ← j + i ;

13 para i← 1 a M hacer
14 res[i]← res[i− 1] + f [i] ;

La complejidad final es:
O(M logM + T ),

ya que las consultas se resuelven en O(1) utilizando el arreglo de prefijos res.

Grupo 3 (Complejidad Esperada: O(n
2
3 ) por caso)

Para resolver este grupo debemos plantear el uso de la Convolución de Dirichlet (∗), la cual está definida
aśı:

Definición 4.1 (Convolución de Dirichlet). La convolución de dirichlet de dos funciones aritméticas f y
g está denotada por f ∗ g y tiene la siguiente definición:

(f ∗ g)(n) =
∑
d|n

f(d)× g
(n
d

)

En este caso, tenemos que:

g(n) =
∑
d|n

f(d) = f ∗ 1

Donde 1 es la función constante h(n) = 1, y deseamos calcular
n∑

i=1
f(i).

En un caso general, para dos funciones f y g, podemos plantear que:

Page 5 of 7



Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

(f ∗ g)(n) =
∑
d|n

f(d)× g
(n
d

)
=

∑
d|n

g(d)× f
(n
d

)

n∑
i=1

(f ∗ g)(i) =
n∑

i=1

g(i)×
⌊ni ⌋∑
j=1

f(j)

Si denotamos por F (n) =
n∑

i=1
f(i), tendremos:

n∑
i=1

(f ∗ g)(i) =
n∑

i=1

g(i)× F
(⌊n

i

⌋)
Si aislamos i = 1 en el lado derecho:

n∑
i=1

(f ∗ g)(i) = g(1)× F (n) +
n∑

i=2

g(i)× F
(⌊n

i

⌋)

F (n) =

n∑
i=1

(f ∗ g)(i)−
n∑

i=2
g(i)× F

(⌊
n
i

⌋)
g(1)

Reemplazando los datos del problema; es decir, f ∗ g = g(n), f = f y g = 1:

F (n) =
n∑

i=1

(i2 + 2026i− 2026)−
n∑

i=2

F
(⌊n

i

⌋)

F (n) =
n(n+ 1)(2n+ 1)

6
+ 1013n(n+ 1)− 2026n−

n∑
i=2

F
(⌊n

i

⌋)
Notemos que hay O(

√
n) valores diferentes de

⌊
n
i

⌋
(para el cual se tiene un algoritmo clásico), aśı que

si almacenamos las respuestas parciales en un std::unordered_map podremos tener una complejidad de
O(n

3
4 ); sin embargo, esto no es suficientemente rápido. Es posible mejorar la complejidad preprocesando

la respuesta de todos los F (i) con i ≤ K, donde la elección de K definirá la complejidad final. Para este
caso, tomar K ≈ n

2
3 nos genera una complejidad de O(n

2
3 ) por caso.

Algoritmo 5: F(n)

1 si n ≤ 106 entonces
2 devolver res[n] ;

3 si memo contiene a n como llave entonces
4 devolver memo[n] ;

5 res← n(n+1)(2n+1)
6 + 1013n(n+ 1)− 2026n ;

6 l← 2 ;
7 mientras l ≤ n hacer
8 x←

⌊
n
l

⌋
;

9 r ←
⌊
n
x

⌋
;

10 // Todos los valores i ∈ [l, r] aportan con el mismo F (x) ;
11 res← res− (r − l + 1)× F (x) ;
12 l← r + 1 ;

13 memo[n]← res ;
14 devolver memo[n] ;

Page 6 of 7



Olimpiada Peruana de Informática 2026 Fase 1A - Solucionario
Peru, 19 de noviembre de 2025

Donde memo es un std::unordered_map global que almacena las respuestas y se asume que se ha ejecu-
tado Preprocesamiento(106) antes de responder a las consultas.

Page 7 of 7


	Problem 1: Adjacent Sort?
	Problem 2: Emparejamiento cercano
	Problem 3: Carrera arreglada
	Problem 4: Un problema de Sumatorias

